1、理论知识
PWM这个功能在飞思卡尔、STM32等高档的单片机内部有专用的模块,用此类芯片实现PWM功能时只需要通过设置相应的寄存器就可实现周期和占空比的控制。但是如果要用51单片机的话,也是可以的,但是比较的麻烦。此时需要用到内部定时p来实现,可用两个定时器实现,也可以用一个定时器实现。
用两个定时器的方法是用定时器T0来控制频率,定时器T1来控制占空比。大致的的编程思路是这样的:T0定时器中断让一个I0口输出高电平,在这个定时器T0的中断当中起动定时器T1,而这个T1,让IO口输出低电平,这样改变定时器T0的初值就可以改变频率,改变定时器T1的初值就可以改变占空比。
下面重点介绍用一个定时器的实现PWM的方法。因为市面上的智能小车所采用的电机大多数为TT减速电机,通过反复的实验,此电机最佳的工作频率为1000HZ(太高容易发生哨叫,太低电机容易发生抖动),所以下面以周期为1ms(1000HZ)进行举例,要产生其它频率的PWM波,程序中只需作简单修改即可。
用一个定时器时(如定时器T0),首先你要确定PWM的周期T和占空比D,确定了这些以后,可以用定时器产生一个时间基准t,比如定时器溢出n次的时间是PWM的高电平的时间,则D*T=n*t,类似的可以求出PWM低电平时间需要多少个时间基准n'。
因为这里我们是产生周期为1ms(1000HZ)的PWM,所以可设置中断的时间间隔为0.01ms,,然后中断100次即为1ms。在中断子程序内,可设置一个变量如time,在中断子程序内,有三条重要的语句:1、当time>=100时,time清零(此语句保证频率为1000HZ),2、当time>n时(n应该在0-100之间变化开),让单片相应的I/O口输出高电平,当time
2、程序1,使单片机的I/O口输出固定频率的PWM波
下面按上面的思路给出一个具体程序:
/*******************************************************************/
/* 程序名:单片机输出固定频率的PWM波*/
/* 晶振:11.00592 MHz CPU型号:STC89C52 */
/* 功能:P2^0口输出周期为1ms(1000HZ),占空比为%80的PWM波*/
/*****************************************************************/
#include
#define uint unsigned int
#define uchar unsigned char
sbit PWM1=P2^0;//接IN1 控制正转
sbit PWM2=P2^1;//接IN2 控制反转
uchar time;
void main()
{
TMOD=0x01;//定时器0工作方式1
TH0=0xff;//(65536-10)/256;//赋初值定时
TL0=0xf7;//(65536-10)%256;//0.01ms
EA=1;//开总中断
ET0=1;//开定时器0中断
TR0=1;//启动定时器0
while(1)
{
}
}
void delay(uint z)
{
uint x,y;
for(x=z;x>0;x--)
for(y=500;y>0;y--);
}
void tim0() interrupt 1
{
TR0=0;//赋初值时,关闭定时器
TH0=0xff;//(65536-10)/256;//赋初值定时
TL0=0xf7;//(65536-10)%256;//0.01ms
TR0=1;//打开定时器
time++;
if(time>=100) time=0;//1khz
if(time<=20) PWM1=0;//点空比%80
else PWM1=1;
PWM2=0;
}
程序说明:
1、关于频率的确定:对于11.0592M晶振, PWM输出频率为1KHZ,此时设定时器0.01ms中断一次,时中断次数100次即为1KHZ( 0.01ms*100=1ms,即为1000HZ)此时, 定时器计数器赋初值为TH0=FF,TL0=F7。
2、关于占空比的确定:此时我们将来time的值从0-100之间进行改变,就可以将占空比从%0-%100之间进行变化,上面程序中time<=20时 PWM1=0; else PWM1=1;意思就是%20的时间输出低电平,%80的时间输出高电平,即占空比为%80。如需得到其它占空比,如%60,只需将time的值改为40即可。(程序为if(time<=40) PWM1=0;else PWM1=1;)
当然编写程序时也可以定义一个标志位如flag,根据flag的状态决定输出高平还是低电平,假设定义flag=1的时候输出高电平,用一个变量去记录定时器中断的次数,每次中断就让记录中断次数的变量+1,在中断程序里面判断这个变量的值是否到了 n ,如果到了说明高电平的时间够了,那么就改变flag为0,输出低电平,同时记录中断变量的值清零,每次中断的时候依旧+1,根lflag=0的情况跳去判断记录变量的值是否到了 n' 如果到了,说明PWM的低电平时间够了,那么就改flag=1,输出改高电平,同时记录次数变量清零,重新开始,如此循环便可得到你想要的PWM波形,这种方法我们这里不在举例,请自己去试着书写。
3、程序2,使用单片机I/O口输出PWM波,并能通过按键控制正反转
在程序中我们通常需要控制电机的正反转,如通过一个按键控制正反转,此时我们也可以设置一个标志位如flag。在主程序中当按键每次被按下时,flag相应取反。然后在子程序中当flag为1时,进行正转程序,当flag为0时执行反转程序。下面的程序功能为单片机I/O口P2^0、P2^1输出1000HZ,占空比为%50,并能过P3^7按键控制正电机的正反转。
/*******************************************************************/
/* 程忻:PWM直流电机调速 */
/* 晶振:11.00592 MHz CPU型号:STC89C52 */
/* 功能:直流电机的PWM波控制,可以通过按键控制正反转 */
/*****************************************************************/
#include
#define uint unsigned int
#define uchar unsigned char
uchar time,count=50,flag=1;//低电平的占空比
sbit PWM1=P2^0;//PWM 通道 1,反转脉冲
sbit PWM2=P2^1;//PWM 通道 2,正转脉冲
sbit key_turn=P3^7; //电机换向
/************函数声明**************/
void delayxms(uint z);
void Motor_turn(void);
void timer0_init(void);
/*********主函数********************/
void main(void)
{
timer0_init();
while(1)
{
Motor_turn();
}
}
/****************延时处理**********************/
void delayxms(uint z)//延时xms程序
{
uint x,y;
for(y=z;x>0;x--)
for(y=110;y>0;y--);
}
/************电机正反向控制**************/
void Motor_turn(void)
{
if(key_turn==0)
{
delayxms(2);//此处时间不能太长,否者会的中断产生冲突
if(key_turn==0)
{
flag=~flag;
}
while(!key_turn);
}
}
/***********定时器0初始化***********/
void timer0_init(void)
{
TMOD=0x01; //定时器0工作于方式1
TH0=(65536-10)/256;
TL0=(65536-10)%256;
TR0=1;
ET0=1;
EA=1;
}
/**************定时0中断处理******************/
void timer0_int(void) interrupt 1
{
TR0=0;//设置定时器初值期间,关闭定时器
TH0=(65536-10)/256;
TL0=(65536-10)%256;
TR0=1;
if(flag==1)//电机正转
{
PWM1=0;
time++;
if(time
{
PWM2=1;
}
else
PWM2=0;
if(time>=100)
{
time=0;
}
}
else //电机反转
{
PWM2=0;
time++;
if(time
{
PWM1=1;
}
else
PWM1=0;
if(time>=100)
{
time=0;
}
}
}