气孔有两种:一种是填充时,金属卷入气体形成的内表面光亮和光滑、形状较为规则的孔洞。另一种是合金熔炼不正确或不够,气体熔解于合金中。压铸时,激冷甚剧,凝固很快,熔于金属内部的气体来不及析出,使金属内的气体留在铸件内而形成孔洞。
压铸件内的气孔以金属卷入型腔中的气体所形成的气孔是主要的,而气体的大部分为空气。
产生气孔的原因
1.内浇口速度过高,湍流运动过剧,金属流卷入气体严重
2.内浇口截面积过小,喷射严重
3.内浇口位置
不合理,通过内浇口后的金属立即撞击型壁、产生涡流,气体被卷入金属流中
4.排气道位置不对,截面积不够,造成排气条件不良
5.大机器压铸小零件,压室的充满度过小,尤其是卧式冷压铸机上更为明显
6.铸件设计不合理。a形成铸件有难以排气的部位;b局部部位的壁厚太厚
7.待加工面的加工量过大,使壁厚增加过多。
8.熔融金属中含有过多的气体
2、缩孔
铸件凝固过程中,金属补偿不足所形成的呈现暗色、形状不规则的孔洞,即为缩孔。其原因有:
I.金属浇入温度过高
II.金属液过热时间太长
III.压射的最终补压的压力不足
IV.余料饼太薄,最终补压起不到作用
V.内浇口截面积过小(主要是厚度不够)
VI.溢流槽位置不对或容量不够
VII.铸件结构不合理,有热节部位,并且该处有解决
VIII.铸件的壁厚变化太大
在压铸件上,产生缩孔的部位,往往是容易产生气孔的处所,故压铸件内,有的孔穴常常是气孔、缩孔混合而成的。
四、条纹
填充过程中,当熔融金属流动的动能足以产生喷溅或虽然聚集成流束,但又相连得不紧密的条件时,边界——凝固层便具有“疏散效应”,而处于这种状态金属在随后的金属主流所覆盖之前,早就凝固,于是,在铸件表面上便形成纹络,这就是压铸件上常见的条纹。铝合金铸件上条纹最为明显,而在铸件的大面积的壁面上,就更为突出。
这种条纹呈现不同的反射程度,有时比铸件的基体的颜色稍暗一些,有时硬度上也稍有不一样。根据工厂初步测定条纹的深度约在0.2毫米以内,而深度为0.05毫米起,外观就已经明显地看出来。
对条纹作化学的、摄谱的和金相<研究发现,条纹与铸件本身相同的化学成分,可而条纹不是硅偏析、渣滓、污损,也不是合金的其它化学本性原因造成的。条纹的深度仅0.08~0.20毫米。有时条纹有着清晰的边界,有时条纹与铸造组织混杂在一起,看不到明显的过渡区。条纹的微观组织基本上没有不同于主要组织,只是它更细致一些。对于铝合金来说,条纹内铝—硅共晶组织更加细致,合金组元中的金属间化合物也是如此。条纹也呈现硅的不足(暗的组成物),但没有发现化学上的差异。在条纹更细的组织中,硅的分布也不一样,既然硅比铝要黑些,因而条纹的颜色常常看来更暗。
综上所述,压铸件表面的条纹,是填充过程中必然发生的结果,尤其是铝合金铸件的表面更为突出,而条纹的组织和性质对于压铸件的使用来说,在一般的情况下没有影响的。只有在壁很薄时,才对条纹的深度有限制。至于在光饰要求高的表面上则还是不应该存在的。
既然条纹是由于边界——凝固层的“疏散效应”所形成,而根据填充过程的特性,便可对产生这种“疏散效应”的原因作如下的分析:
I.填充时,剧烈的湍流将气体卷入金属流中,从而对金属
速产生弥散作用。
II.在填充过程中,铸件的外壳层(边界——凝固层)常常不是整个地同时形成的(在填充理论的叙述中已经提到)在尚未形成壳层的区域便出现“疏散效应”。对于有大平在面的铸件,在大的平面壁上就更为明显。
III.模具温度低于热平衡条件所应有的温度,使“疏散效应”更为强烈,产生的区域亦大为增多。
IV.金属流撞击型壁而产生溅射所造成的“疏散效应”十分明显,当撞击后的金属分散成密集的液滴,p成为麻面。这就是铸件表面上总是带有强烈的溅射痕迹的原因。正对内浇中的型壁是撞击溅射最常见的区域。
V.涂料涂层不匀,厚的部位受到金属流的炽热混杂在金属中,并使金属产生“分隔”,从而造成“疏散效应”。
VI.涂料局部沉积而气体又未挥发干净,余下的气体被金属流所包卷,对金属流产生弥散作用。
VII.排溢系统不合理,逸气不通畅,型腔中的气体过多,金属流因气体而弥散的作用增强。
根
据条纹产生的原因,可见其深度是随时变化的。所以,生产中,常常按深度的不同,将条纹分别称为花纹、流痕、麻面和冷纹等等。而冷纹的深度则是条纹中最深的一种。
五、表层疏松
压铸件<外壳层(边界——凝固层)一般约为0.5~0.8毫米左右。在这个壳层(也称表皮层)上有一种呈现松散不密实的宏观组织,即为表层疏松。