热核聚变技术,核聚变,即氢原子核(氘和氚)结合成较重的原子核(氦)时放出巨大的能量。热核反应是氢弹爆炸的基础,可在瞬间产生大量热能,但目前尚无法加以利用。如能使热核反应在一定约束区域内,根据人们的意图有控制地产生与进行,即可实现受控热核反应。这正是目前在进行试验研究的重大课题。受控热核反应是聚变反应堆的基础。聚变反应堆一旦成功,则可能向人类提供最清洁而又是取之不尽的能源。
背景
能源是生产、i活的基本要素,又是影响气候变化的重要因子,实现全球经济的可持续发展、有效应对气候变化都离不开能源技术的进步和能源结构的调整。为此,加强能源科技创新,促进新能源发展,不仅将影响今天的发展,更关乎于人类的未来发展。
当今世界,能源科技飞速发展,可持续发展理念深入人心。人类能源开发和利用再次进入了一个重大转折时期。有效地应对气候变化、满足日益增长的能源需求,将使未来的能源结构、利用方式产生深刻的变革。开发清洁能源、提高能源效率,促进节约能-、减少排放,正成为各国的新目标。尽管受到国际金融危机影响,能源价格下降,但许多国家还是把发展新能源作为应对危机的重要措施,这必将催生新的能源产业,加速能源转型进程,开启人类能源利用的新纪元。
多年来,中国政府高度重视节能减排技术的研究开发和推广应用,重视新能源的开发利用。早在本世纪初,就已系统部署了“电动汽车”、“半导体照明”、“风能和太阳能”、“清洁煤利用”和“高温气冷堆”等一系列有关新能源的重大科技项目,在发展新型能源汽车、推动s明节能、开发新能源等方面作出了积极探索。2008年的北京奥运会上,一大批节能和新能源技术得到应用,太阳能、风能、新能源汽车和半导体照明都得到规模化推广示范,有力支撑了“绿色奥运、科技奥运、人文奥运”。2010年即将在上海举办的世界博览会,也将推广应用一大批新能源s节能减排技术。
能源转型是一个长期过程,需要统筹兼顾、系统而周密的部署。2006年中国政府颁布实施了《国家中长期科学和技术发展规划纲要(2006—2020)》,明确地把发展太阳能、风能、核能和生物质能作为推进能源结构多元化的重要手段,把洁净煤技术、煤层气开发作为降低污染的重要选择,把建筑、交通以及工业流程领域提高能效、降低排放作为节能减排的主要方式。
2009年以来,国际金融危机的影响不断加深,对全球经济造成巨大冲击,也给中国经济社会发展带来严峻挑战。为应对国际金融危机,中国政府做出了一系列重大决策和部署,强调要重视科技创新的作用,把发挥科技支撑作用作为促进经济平稳较快发展的重要举措,把发展新能源科技和产业作为应对危机和结构调5闹匾措施之一。在此框架下,科技部、国家发改委、财政部、工信部等相关部门共同启动了“十城千辆”、“十城万盏”和“金太阳”等节能和新能源示范工程——“十城千辆工程”计划在十余个城市的公共交通领域规模化地推广应用混合动力、纯电动和燃料电池汽车,预计到2012年推Sτ6万辆节能与新能源汽车,带动中国新能源汽车产业的发展。
“十城万盏计划”将在21个城市的公共照明领域推广应用半导体照明技术,预计用3年时间推广使用600万盏半导体功能性和景观照明产品,=诘10亿千瓦时。到2015年,半导体照明将进入30%的通用照明市场,年节电可达1400亿千瓦时。
简介
热核聚变技术。作为面向未来的热核聚变技术,也许需要30年到50年以后才能够成为稳定的能源供应。中国正积极参与到国际能源科技合作项目ITER计划中,同时还超前部署国内相关的技术研发工作。
原理
热核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚模如太阳发光发热的能量来源。
应用
1、可控核聚变的发生条件,产生可控核聚变需要的条件非常苛刻。我们的太阳就是靠核聚变反应来给太阳系带来光和热,其中心温度达到1500万摄氏度,另外还有巨大的压力能使核聚变正常反应,而地球上没办法获得巨大的压力,只能通过提高温度来弥补,不过这样一来温度要到上亿度才行。核聚变如此高的温度没有一种固体物质能够受,只能靠强大的磁场来约束。此外这么高的温度,核反应点火也成为问题。不过在2010年2月6日,美国利用高能激光实现核聚变点火所需条件。中国也有“神光2”将为中国的核聚变进行点火。
2、核聚变的反应装置目前,可行性较大的可控核聚变反应装置就是托卡马克装置。
托卡马克是一种利用磁约束来实现受控核聚变的环性容器。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位八樟莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。
托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。中国也有两座核聚变实验装置。
3、核聚变的优劣势
优势:
(1).核聚变释放的能量比核裂变更大
(2).无高端核废料
(3).可不对环境构成大的污染,而且反应过程容易控制,核事故风险极低!
(4).燃料供应充足,地球上重氢有10万亿吨(每1升海水中含30毫克氘,而30毫克氘聚变产生的能量相当于300升汽油)
(5).胤ㄓ米骱宋淦鞑牧弦簿兔挥辛苏治干涉!
劣势:反应要求极高,技术要求极高
从理论上看,用核聚变制造武器和提供部啬茉矗是非常有益的。但目前人类还没有办法,对它们进行较好的利用。
(对于核裂变,由于原料铀的储量不多,政治干涉很大,放射性与危险性大,核裂变的优势无法完全利用。截至2006年,核能(核裂变能)发电占世界总电力约15%。说明了核裂变的应用的规模之大,更能说明优势比核裂变更大的核聚变能源前景更加光明。科学家们估计,到2025年以后,核聚变发电厂才有可能投入商业运营。2050年前后,受控核聚变发电将广泛造福人类。)
中国加入国际热核聚变实验堆计划
中国2006年11月21日,正式加入国际热核聚变实验堆(ITER)计划,并与ITER计划"他六方一道签订该计划联合实施协定及相关文件,正式启动实施ITER计划。科技部官员表示,中国加入ITER计划既是从根本上解决能源问题的战略需要,也有多方面现实意义。
中国加入ITER计划带来的多项现实意义主要包括:一是ITER计划是中国有史以来参加规模最大的国际科技合作项目,通过参加ITER的建造和运行,全面掌握相关知识和技术,使中国有可能在较短时间赶上磁约束聚变研究世界先进水平,大大加快中国聚变能开发进程。
二是ITER是核科学技术、超导技术、大功率微波技术、等离子体技术、高能粒子束技术、复杂系统控制技术、机器人技术、精密加工技术等综合集成,可拉动中国相关领域技术发展。
三是中国对ITER建造的贡献中,将近百分之八十是以国内制造的实物部件形式实现,这对提高中国企业技术能力和国际竞争力也是个难得的机会。
四是中国全面参加ITER建设和实验,可全面掌握ITER的知识和技术,从而培养一批聚变工程和科研人才。
五是中国参加实施ITER计划,配合国内必要的基础研究、聚变反应堆材料研究、聚变堆某些必要技术研究,有可能在较短时间、用较小投资使中国核聚变能研究在整体上进入世界前沿,为中国自主开展核聚变示范电站研发奠定基础。
ITER计划是目前世界上仅次于国际空间站的又一个国际大科学工程计划。该计划将集成当今国际上受控磁约束核聚变的主要科学和技术成果,首次建造可实现大规模聚变反应的聚变实验堆,是人类受控核聚变研究走向实用的关键一步,因此备受各国政府与科技界的高度重视和支持。
项建设
越来越严重的能源危机已经让世界各国意识到了未来可能面临的灾难,而末日说的泛滥使得人类不得不重新审视自己的所作所为。据英国媒体报道,作为继国际空间站之后的全人类共同期盼的际热核计划,终于在争吵声中继续进行,世界主要大国同意继续资助这一项目。
ITER计划主要是为验证全尺寸可控核聚变技术的可行性,其原理类似于太阳发光发热,即在上亿摄氏度的高温条件下利用氢的同位素氘、氚的聚变反应释放出核能。通过查阅资料发现,与目前的核电站不同,聚变反应堆从本质上讲不会发生泄漏,所以国际热核实验反应堆和下一代核聚变反应堆不会发生重大事故。另外,它也不对环境和周围居民构成威胁。
ITER计划也被称为“人造太阳”计划,一旦实验成功,那么将会使人类彻底摆脱目前的能源危机,进行一个崭新的清洁能源的新时期。有人也将这项计划比作<2012>中的诺亚方舟,认为是拯救人类的最先进武器。
虽然计划和愿望是美好的,但是自1985年美、苏和欧洲开始筹划设计以来,经历了35年的时间,在此期间经历了太多的磨难,这项预期耗资100亿的项目,所需要的开支越来越庞大,使得世界各国有些不堪重负。目前总共有7方参与这个计划,包括欧=、中国、美国、日本、韩国、俄罗斯和印度等33个国家,此前加拿大曾参与其中,但随后退出,其退出的原因也是因为它的耗资太过巨大,超出了加拿大的承受能力。
与此同时的是,在实验过程中,这项计划也遭遇到了非常严重的困难,很多技术上的难题难以解决。一位热核科学家表示,在2020年之前这项实验可能无法启动,如果要想发电至少要等到2040年。这样的时间表,使得参与该计划的各国产生了犹豫。法国南部城市卡达拉舍的ITER项目建设基地绿色和平组织的首席英国科学家道格扑顾档溃骸拔颐嵌哉庀罴苹能否继续实施真的非常怀疑,但这项计划绝非是用金钱所能衡量的,我们要想摆脱能源危机,摆脱对碳的需求,就必须将这项计划进行下去。”
国际热核计划的技术部副部长大卫-坎贝尔说道:“这的确是一个巨大的挑战,我们都希望有支付终结的那一天,但目前来看,它的继续进行的确需要更多的支持,而在未来,对我们的利好消息就是它将接管发电。”
在7月28日,参与该项计划的7方进行了会谈,他们再度达成协议支持这项计划。对此,大卫-坎贝尔兴奋的表示:“到了秋天,一些关键性的建设工作将会启动,这真的令人非常期待。”
ITER项目建设在法国南部城市卡达拉舍(Cadarache),反应堆高一百八七英尺,而重量是2.3万吨,是埃菲尔铁塔的3倍。
项目进展
国际热核聚变实验堆(ITER)组织理事会正式通过了《基准文件》,ITER组织理事会主席叶夫根尼·威利科夫表示,这标志着ITER计划进入决定性阶段。
2010年7月28日,ITER组织发布公;称,来自欧盟、中国、美国、日本、韩国、俄罗斯和印度七方的理事以及一名国际原子能机构的观察员参加了27日至28日在该组织所在地、法国南部的卡达拉舍举行的特别会议,最终通过了《基准文件》,该文件包括两项重要内容,一是项目预算,二是项目时间表。
ITER是为验证全尺寸可控核聚变技术的可行性而设计的,其原理类似太阳发光发热,即在上亿摄氏度的高温条件下,利用氢的同位素氘、氚的聚变反应释放出巨大能量,从而为人类提供可持续发展的洁净能源。ITER实验堆高度为24米,直径30米,计划产生等离子体的体积为840立方米,维持时间为400秒,聚变能500兆瓦。输出与输入能量比最低为10∶1,最高可达到30∶1。
在时间表方面,ITER组织决定放弃其原定于2018年获得第一个等离子体的目标,将时间推迟为2019年11月。预计2026年之后才会开始关键的氘、氚核反应。在预算方面,欧盟将为该项目追加最多不超过85亿美元的额外资助,该项目的总预算将达190亿美元。
该会议惶崦日本物理学家本岛修为ITER组织新的总干事,以接替从2005年11月起担任ITER组织总干事的池田要。
此外,ITER也将测试很多与聚变有关的关键技术,包括加热、控制和远程管理,这些都是全尺寸核反应需要的技术。如果ITER获得成功,下一步将建立商用的反应堆,可能又再需要花费10年多的时间。
2006年5月24日,参与ITER计划的七方草签了与该计划有关的一系列合作协议,同年11月签署了ITER条约2007年10月24日,该条约正式生效,标志着ITER组织正式成立,ITER计划进入正式实施阶段。
2016年12月10日,中国央视《新闻联播》报道,由中国研制的热核聚变堆核心部件在国际上率先通过认证,这是中国对国际热核聚变实验堆项目的重大贡献。