• 高进给切削
• 高速和高进给切削
• 高生产率切削
我们对高速切削的定义描述如下:
• HSM不是简单意义上的高切削速度。它应当被认为是用特定方法和生产设备进行加工的工艺。
• 高速切削无需高转速主轴切削。许多高速切削应用是以中等转速主轴并采用大尺寸刀具进行的。
• 如果在高切削速度和高进给条件下对淬吒纸行精加工,切削参数可为常规的4到6倍。
• 在小尺寸零件的粗加工到半精加工、精加工及任何尺寸零件的超精加工中,HSM意味着高生产率切削。
• 零件形状变得越来越复杂,高速切削也就显得越来越重要。
• 现在,高速切削主要应用于锥度40的机床上。
关于高速切削的详细信息,请参见模具制造应用指南 C-1120:2。 请参见模具制造应用指南 C-1120:2。
21) 高速切削目标是什么?
高速切削的主要目标之一是通过高生产率来降低生产成本。它主要应用于精加工工序,常常是用于加工淬硬模具钢。另一个目标是通过缩短生产时间和交货时间提高整体竞争力。
达到这些目标的主要因素为
• 一次(更少此数)装夹的模具加工。
• 通过切削改善模具的几何精度,同时可减少手工劳动和缩短试模时间。
• 使用CAM系统和面向车间的编程来帮助制定工艺计划,通过工艺计划提高机床和车间的利用率。
关于高速切削的详细信息,请参见模具制造应用指南 C-1120:2。 请参见模具制造应用指南 C-1120:2。
22) 高速切削的实际优点是什么?
刀具和工件可保持低温度,这在许多情况下延长了刀具的寿命。另一方面,在高速切削应用中,切削量是浅的,切削刃的吃刀时间特别短。这就是说,进给比热传播的时间快。
低切削力得到小而一致的刀具弯曲。这与每种刀具和工序所需的恒定的加工余量相结合,是高效和安全加工的先决条件之一。
由于高速切削中典型的切削深度是浅的,刀具和主轴上的径向力低。这减少了主轴轴承、导轨和滚珠丝杠的磨损。高速切削和轴向铣削也是良好的组合,它对主轴轴承的冲击小,使用这种方法可以使用悬伸较长的刀具而振动的风险不大。
小尺寸零件的高生产率切削,如粗加工、半精加工和精加工,在总的材料去除率相对低时有很好的经济性。
高速切削可在一般精加工中获得高生产率,可获得杰出的表面质量ū砻嬷柿砍5陀赗a 0.2 um。
采用高速切削,使对薄壁零件的切削成为可能。使用高速切削,吃刀时间短,冲击和弯曲减小了。
模具的几何精度提高了,组装就容易和更快了。无论是什么人,技能如何,都能获得CAM/CNCú的表面纹理和几何精度。如果花在切削上的时间稍多一些,费时的人工抛光工作可显著减少。常常可减少达60-100%
一些加工,如淬火、电解加工和电火花加工(EDM),可以大大减少。这就可降低投资成本和简化后勤供应。用切削代替电火花加工(EDMǎ模具使用寿命和质量也得到提高。
采用高速切削,可通过CAD/CAM很快改变设计,特别是在不需要生产新电极的情况下。
关于高速切削的详细信息,请参见模具制造应用指南C-1120:2。请参见模具制造应用指南C-1120:2。
23) 高速切削有风险或缺点吗?
• 由于起始过程有高的加速度和减速度以及停止,导轨、滚珠丝杠和主轴轴承产生相对快的磨损。这常常导致较高的维护成本。
• 需要专门的工艺知识、编程设备和快速传送数据的接口。
• 可能很难找到和挑选高级技术员工。
• 常有相当长的调试和出故障时间。
• 加工中无需紧急停止,导致人为错误和软件或硬件故障会产生许多严重后果。
• 必须有良好的加工计划——“向饥饿的机床提供食物”。
• 必须有安全保护措施:使用带安全外罩及防碎片盖的机床。避免刀具的大悬伸不要使用“重”刀具和接杆。定期检查刀具、接杆和螺栓是否有疲劳裂纹。 仅使用注明最高主轴速度的刀具。不要使用整体高速钢(HSS)刀具!
关于高速切削的详细信息,请参见模具制造应用指南C-1120:2。 请参见模具制造应用指南C-1120:2。
24) 高速切削对机床有哪些要求?
对ISO/BT 40号机床的典型要求如下:
• 主轴速度范围 • 主轴功率 > 22 kW
• 可编程进给率 40-60 m/分
• 快速横向进给 • 轴向减速度/加速度 > 1 G