三、点焊焊接参数
当采用工频交流电源时,点焊参数主要有焊接电流、焊接(通电)时间、电极压力和电极尺寸。
1.焊接电流Iω析出热量与电流的平方成正比,所以焊接电流对焊点性能影响最敏感。在其它参数不变时,当电流小于某值熔核不能形成,超过此值后,随电流增加熔核快速增大,焊点强度上升(图3中AB段),而后因散热量的增大而浜嗽龀に俣燃趸海焊点强度增加缓慢(图3中BC段),如进一步提高电流则导致产生飞溅,焊点强度反而下降。所以一般建议选用对熔核直径变化不敏感的适中电流(BC段)来焊接。
在实际生产中,焊接电流的波动有时甚大,其原因有:
①电网电压本身波动或多台焊机同时通电;②铁磁体焊件伸入焊接回路的变化;③前点对后点的分流等。除选择对焊接电流变化较不敏感的参数外,解决上述问题的方法是反馈控制。目前最常用的有网压补偿法、恒流法与群控法。网压补偿法可用于所有各种情况,恒流法主要用于第②种情况,倌苡糜诘冖壑智榭觯群控法仅用于第①种情况。
2.焊接时间tω通电时间的长短直接影响输入热量的大小,在目前广为采用的同期控制点焊机上,通电时间是周(我国一周为20ms)的整倍数。在其它参数固定的情况下,只有通电时间超过某最小值时才开始出现熔核,而后随通电时间的增长,熔核先快速增大,拉剪力亦提高。当选用的电流适中时,进一步增加通电时间熔核增长变慢,渐趋恒定。但由于加热时间过长,组织变差,正拉力下降,会使塑性指标(延性比Fσ/Fτ)下降(图4)。当选用的电流较大时,则熔核长大到一定极限后会产址山Α
3.电极压力F电极压力的大小一方面影响电阻的数值,从而影响析热量的多少,另一方面影响焊件向电极的散热情况。过小的电极压力将导致电阻增大、析热量过多且散热较差,引起前期飞溅;过大的电极压力将导致电阻减小、析热量少、散热良好、熔核尺寸缩小,尤其是焊透率显著下降。因此从节能角度来考虑,应选择不产生飞溅的最小电极压力。此值与电流值有关,可参照文献中广为推荐的临界飞溅曲线见图5。目前均建议选用临界飞溅曲线附近无飞溅区内的工作点。
4.电极工作面尺寸其工作面尺寸参见下表吣壳暗愫甘敝饕采用锥台形和球面形两种电极。锥台形的端面直径d或球面形的端部圆弧半径R的大小,决定了电极与焊件接触面积的多少,在同等电流时,它决定了电流密度大小和电极压强分布范围。一般应选用比期望获得熔核直径大20%左右的工作面直径所需的端部尺寸。其次由于电极是内水冷却的,电极上散失的热量往往高达50%的输入总热量,因此端部工作面的波动或水冷孔端到电极表面的距离变化均将严重影响散热量的多少,从而引起熔核尺寸的波动。因此要求锥台形电极工作面直径在工作期间每增大15%左右必须修复。而水冷孔端至表面距离在耗损至仅存3~4mm时怯Ω换新电极。
点焊时各参数是相互影响的,对大多数场合均可选取多种各参数的组合。
目前常用材料的点焊参数均可在资料中以表格或计算图形式找到,但采用前应根据具体条件作调整试焊。
由于材料表面状态及清理情况每批不尽相同,生产车间网压有波动、设备状况有变化,为保证焊接质量,避免批量次品,往往希望事先取得焊接参数允许波动的区间。所以大批量生产的场合,对每批材料、每台刚大修后的设备须作点焊时允许参数波动区间的试验,其试验步骤如下:
1)确定质量指标,例如熔核直径或单点拉剪力的上下限。
2)固定其它参数,作某参数(例如电流)与质量指标的关系曲线,而后改变固定参数中之一(例如通电时间),再作焊接电流与质量的关系曲线,如此获得关系曲线族。
3)/把质量指标中合格部分用作图法形成此二参数(例如电流与时间)允许波动区间的叶状曲线。
可同样获得例如焊接电流与电极压力等的叶状曲线。在生产中把参数控制在叶状曲线内的工作点上即可。