二、箱体零件加工工艺分析
(一) 工艺路线的安排
车床主轴箱要求加工的表面很多。在这些加工表面中,平面加工精度比孔的加工精度容易保证,于是,箱体中主轴孔(主要孔)的加工精度、孔系加工精度就成为工艺关键问题。因此,在工艺路线的安排中应注意三个问题:
1.工件的时效处理
箱体结构复杂壁厚不均匀,铸造内应力较大。由于内应力会引起变形,因此铸造后应安排人工时效处理以消除内应力减少变形。一般精度要求的箱体,可利用粗、精加工工序之间的自然停放和运输时间,得到自然时效的效果。但自然时效需要的时间较长,否则会影响箱体精度的稳定性。
对于特别精密的箱体,在粗加工和精加工工序间还应安排一次人工时效,迅速充分地消除内应力,提高精度的稳定性。
2.安排加工工艺的顺序时应先面后孔
由于平面面积较大定位稳定可靠,有利与简化夹具结构检少安装变形。从加工难度来看,平面比孔加工容易。先加工批平面,把铸件表面的凹凸不平和夹砂等缺陷切除,在加工分布在平面上的孔时,对便于孔的加工和保证孔的加工精度都是有利的。因此,一般均应先加工平面。
3.粗、精加工阶段要分开
箱体均为铸件,加工余量较大,而在粗加工中切除的金属较多,因而夹紧力、切削力都较大,切削热也较多。加之粗加工后,工件内应力重新分布也会引起工件变形,因此,对加工精度影响较大。为此,把粗精加工分开进行,有利于把已加工后由于各种原因引起的工件变形充分暴露出来,然后在精加工中将其消除。
(二) 定位基准的选择
箱体定位基准的选择,直接关系到箱体上各个平面与平面之间,孔与平面之间,孔与孔之间的尺寸精度和位置精度要求是否能够保证。在选择基准时,首先要遵守“基准重合”和“基准统一”的原则,同时必须考虑生产批量的大小,生产设备、特别是夹具的选用等因素。
1. 粗基准的选择
粗基准的作用主要是决定不加工面与加工面的位置关系,以及保证加工面的余量均匀。
箱体零件上一般有一个("几个)主要的大孔,为了保证孔的加工余量均匀,应以该毛坯孔为粗基准(如主轴箱上的主轴孔)。箱体零件上的不加工面主要考虑内腔表面,它和加工面之间的距离尺寸有一定的要求,因为箱体中往往装有齿轮等传动件,它们"不加工的内壁之间的间隙较小,如果加工出的轴承孔端面与箱体内壁之间的距离尺寸相差太大,就有可能使齿轮安装时与箱体内壁相碰。从这一要求出发,应选内
壁为粗基准。但这将使夹具结构十分复杂,甚至不能实现。考虑到铸造时内壁与主要孔都是同一个泥心浇注的,因此实际生产中常以孔为主要粗基准,限制四个自由度,而辅之以内腔或其它毛坯孔为次要基准面,以达到完全定位的目的。
1. 精基准的选择
箱体零件精基准的选择一般有两种方案:一种是以装配面为精基准。以车床主轴箱镗孔夹具为例,该夹具如图9-8所示。它的优点是对于孔与底面的距离和平行度要求,基准是重合的,没有基准不重合误差,而且箱口向上,观察和测量、调刀都比较方便。但是在镗削中间壁上的孔时,由于无法安装中间导向支承,而不得不采用吊架的形式(见图中件3)。这种吊架刚性差,操作不方便,安装误差大,不易实现自动化,故此方案一般只能适用于无中间孔壁的简单箱体或批量不大的场合。
针对上述采用吊架式中间导向支承的问题,采用箱口向下的安装方式,以箱体顶面R和顶面上的两个工艺孔为精基准。如图9-9所示。在镗孔时,由于中间导向支承直接固定在夹具上,使夹具的刚度提高,有利于保证各支承孔的尺寸和位置精度。并且工件装卸方便减少了辅助时间,有利于赂呱产率。但是这种定位方式也有不足之处,